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Abstract

Let {a;, a2, ...} be a sequence of real numbers outside the interval [—1, 1] and p a positive
bounded Borel measure on this interval satisfying the Erdés—Turan condition g/ >0 a.e., where
' is the Radon—Nikodym derivative of the measure u with respect to the Lebesgue measure.
We introduce rational functions ¢,(x) with poles {aj, ...,o,} orthogonal on [—1,1] and
establish some ratio asymptotics for these orthogonal rational functions, i.e. we discuss the
convergence of ¢, (x)/¢,(x) as n tends to infinity under certain assumptions on the location
of the poles. From this we derive asymptotic formulas for the recurrence coefficients in the
three-term recurrence relation satisfied by the orthonormal functions.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Ratio asymptotics for orthogonal polynomials on the interval [—1, 1] have been
studied in several books and papers. Most results were obtained relating these
polynomials to polynomials orthogonal on the unit circle in the complex plane using
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the Joukowski transform x = 3(z + z~') which maps the unit circle to the interval
[—1,1]. In this way, Szegd [9] obtained convergence results for weights satisfying
Szegd’s condition, and later Rakhmanov [6,7] derived results for the weaker Erdds—
Turan condition. See also [4,5] for results about polynomials orthogonal with respect
to varying measures.

Orthogonal rational functions are a generalization of orthogonal polynomials, in
such a way that we recover the polynomial situation if all poles are at infinity.
Asymptotics for rational functions orthogonal on the unit circle (or, using a Cayley
transform, on the extended real line) were studied in [1], but the case of a finite
interval has thus far not been treated. In this paper, it is our aim to derive
convergence results for orthogonal rational functions on the interval [—1, 1], using a
relation between rational functions on the unit circle and the interval [—1,1] as
described in [10].

Just as in the polynomial case, orthogonal rational functions satisfy a three-term
recurrence relation. Asymptotics for the recurrence coefficients can be derived in a
very natural way from the ratio asymptotics for the orthogonal functions, as in [6].

In the next sections, we introduce the spaces of rational functions we are dealing
with and we discuss the recurrence relation. We will need several results before we
can state our main theorem about the convergence of the ratio of orthogonal
rational functions in Section 6. Using this theorem it is not difficult to derive
asymptotics for the recurrence coefficients.

2. Preliminaries

The complex plane is denoted by C, the Riemann sphere by C=Cu {00}, the real
line by R and the extended real line by R = RuU{ oo }. For the unit circle, its interior
and its exterior we introduce the following notation:

T={z|z| =1}, D={z|z|<l}, E={z|z|>1}.

We will also use I = [—1,1], Rl = R\Z and C' = C\I. Given positive bounded Borel
measures 4 on [ and v on [0, 27], respectively, the inner product is defined as

l —_—
<fag>:/ f(2)g(z)dp(z), on I,
-1
2n

In [1], the measure is assumed to be normalized, i.e. {1,1) = 1. The convergence
results from Section 4 were proved under that assumption, but it is not difficult to see
that they remain valid in the case of a nonnormalized measure. Therefore, in what
follows we will drop the normalization assumption. The convergence results for the
unit circle in Section 4 depend on the divergence to zero of the Blaschke products
B,(z) defined in this section. The Blaschke factors as defined in [1] differ from the

ones we define further on by a factor —f,/|8,|. These unimodular constants are

(é%)g(ei?) dv(#), on T.
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needed to ensure the convergence of the Blaschke products, but if they diverge to
zero, they diverge with or without these constant factors. Since this type of divergent
Blaschke products are considered in this paper, the presence of these constants is
irrelevant for our results. We have used the definitions from [10].

Now we are ready to introduce the space of rational functions with real poles in
R. Let a sequence {a;,a, ...} cR! and a positive bounded Borel measure u with
supp(u) =1 an infinite set be given (where supp(u) means the support of the measure,
1.e. the smallest closed set whose complement has y measure zero) and assume that
w >0 a.e., where p is the Radon—-Nikodym derivative of the measure p with respect
to the Lebesgue measure. Define factors

z

ZE) =Ty

n=12,...

and basis functions
bo=1, by(z) =by-1(2)Z,(2), n=12,...

Then we define the space of rational functions with poles in {«, ...,a,} as
&, =span{by, ...,b,}.

After orthonormalization of the basis {by, ...,b,} with respect to u we obtain
orthogonal rational functions {¢, ..., ®,}, where we choose the leading coefficient
k, in the expansion ¢,(z) = k,b,(z) + --- to be real. The ¢, will be uniquely
determined once the sign of &, is fixed. We will get back to this later on.

The orthogonal rational functions on the unit circle are defined similarly. Let a
sequence of complex numbers {f,f,,...}=D and a positive bounded Borel
measure v on T be given (again assume supp(v) is an infinite set and v/ >0 a.e.).
Define the Blaschke factors

and Blaschke products
By=1, Bu(z)={,(2)Bs-1(2), n=12 ..
and the space of rational functions on the unit circle,

:f,, = span{By, ..., B, }.

Note that the poles {1/B, ...,1/fB,} of a function f e ,El’,, are in E. Orthonormaliz-

ing the basis {By, ..., B,} we obtain the orthogonal functions {¢,, ..., ¢,}, where we
choose the leading coefficient x, in ¢,(z) = k,B,(z) + --- to be positive.
Now define the para-hermitian conjugate of a function f(z) as
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and the superstar transform of ¢, as
$,,(2) = Bu(2)$y. (2).

Note that ¢ is a function in 2.

3. Three-term recurrence

As in the polynomial case, orthogonal rational functions on (an interval of ) the
real line satisfy a three-term recurrence relation. We shall call the orthogonal rational
function ¢,, singular if p,(o,—;) = 0, where p,, is the numerator polynomial of ¢,, and
regular otherwise. If we put by convention o_; = oy = oo then it can be shown [1]
that the orthonormal functions ¢, satisfy the following three-term recurrence
relation with the initial conditions ¢_,(z) =0, ¢,(z) = 1 iff the system {¢,} is
regular,

00() = (Eazo(2) + B, 22 N (2 = En 2nE) ), (1)
anl (Z) Enfl Zn72(2)

If we take the coefficient E, to be positive, then the functions ¢, will be uniquely
determined. This amounts to fixing the sign of k. In the case of orthogonality on 7/
and poles in R’ the regularity conditions are always satisfied. This follows from the
following theorem, which can be found in [2].

Theorem 1. Let ¢, be an orthogonal rational function on the interval [—1, 1] with poles
outside this interval. Then the zeros of ¢, are simple and contained in the open interval

(—=1,1).

In [2], the measure was assumed to be absolutely continuous with respect to the
Lebesgue measure, but the theorem still holds for arbitrary measures if the support
of the measure is an infinite set (the proof proceeds along the same lines as
the classical proof on the location of the zeros of orthogonal polynomials, see
e.g. [9, p. 44]). Having established the regularity of the system {¢,} we know that
recurrence relation (1) holds for all n> 1. It thus makes sense to study the asymptotic
behaviour of the recurrence coefficients E, and B, as n tends to infinity.

4. Convergence results for the unit circle

In this section, we will recall some convergence results about orthogonal rational
functions on the unit circle with poles in E, as stated in [1]. In the following, locally
uniform convergence in a region Q will mean uniform convergence on compact
subsets of Q.

First we mention the following theorem from [1, Chapter 9].
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Theorem 2. Let {f,f,, ...} =D be a sequence which is compactly included in D and
{¢y, b1, ...} the orthonormal functions associated with the basis functions {By, By, ... }
as defined in Section 2, and let v be a positive bounded Borel measure on T satisfying
the Erdos—Turdn condition v >0 a.e. Then locally uniformly in D,

- 9a(2)
1 —0.
a6 =Y

Regarding ratio asymptotics we have

et G0 = BT8P
e 8,,¢Z(Z)(l - ﬁ-nz) \/ 1 — |ﬁn+1|2

where ¢, is a unimodular constant such that ¢,$,(0) >0, i.e. &, = |$,(0)|/¢,(0). Again
convergence is locally uniform in D.

If v satisfies the Szegd condition

2n
/ logV'(0) df> — oo,
0

then we can define the Szegé function ¢(z) as

1 il 4 7

o'(Z) :eXp{E A mlogv’(@) d@}, zeD.

In this case, we have the following strong convergence result from [1, Chapter 9].

Theorem 3. Let {f,f,, ...} =D be a sequence which is compactly included in D and
{bo, b1, --- } the orthonormal functions associated with the basis functions { By, By, ...}
as defined in Section 2, and let v be a positive bounded Borel measure on T satisfying
Szegd’s condition logv' e L'(0,2n]. Then locally uniformly in D,

¢ (2)(1 = Baz)

. 1
lim =,
1_|ﬁ ‘2 G(Z)

where ¢, is as in Theorem 2 and o(z) is the Szegé function defined above.

5. Relating the unit circle to the interval

In this section, we use x as the independent variable for the orthonormal rational
functions ¢, (x) on I and z for the functions ¢,(z) orthogonal on the unit circle. They
can be related to each other in more or less the same way orthogonal polynomials on
I can be related to orthogonal polynomials on the unit circle, see [9]. The relations in
this section were derived in [10].

We denote the Joukowski transform x =3(z+z7") by x = J(z), mapping the

open unit disc D to the cut Riemann sphere C’ and the unit circle T to the interval 1.
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The inverse mapping is denoted by z = J~!(x) and is chosen so that ze D if xeCl.
To the sequence {ay,a,, ...} =R’ we associate a sequence {f, 5, ...} =I such that
B =J Yox), and a sequence {fi,f», ...} such that fy = fu_1 =p;. The
corresponding Blaschke products and orthogonal functions are denoted by a tilde.
Obviously, By, = (Bk)z. The fact that {e,} =R’ implies that {f,} is actually in the
open interval (—1,1) and thus in D.

Next define the measure' v on T as

V(E) = u({cos 0,0e En[0,m)}) + u({cos 0,0 En[mn,2m)}). (2)

This is sometimes written as v(E) = [, |du(cos 0)|, but we prefer the less ambiguous
notation. Using the Lebesgue decomposition of u and the change-of-variables
theorem (see e.g. [8, p. 153]) it is not difficult to see that

V(0) = i/ (cos 0)|sin 0. (3)

Then if {¢,} is the orthonormal set associated with the measure v and the sequence
{B1, B2, ...}, we have the following theorem.

Theorem 4. Let {¢,} be a set of orthonormal rational functions on I and {¢,} the
corresponding set of functions orthogonal on T with poles and measure as defined
above, then they are related by

_1

(ﬁ”)} (B (2)2(2) + B2 ),

0u() = m(zn)‘%{l y ol

2n

where x = J(z) and 0, = +1 is such that the normalization of Section 2 holds.

Note that we have to double the multiplicity of every pole to obtain these results.

6. Ratio asymptotics

With the aid of Theorems 2 and 4, we are able to prove our main results about the
convergence of the ratio of orthogonal rational functions on /. Of course more
restrictive conditions on the location of the poles lead to more specific convergence
results. In the sequel we will use the concept of asymptotic periodicity, which we
define as follows: a sequence {aj, o, ... } is asymptotically periodic with period m if
there exists a periodic sequence {o, 49, ...},

0 —_ 40 _
U = %y B =1,2, ...

"In [10], the measure u was assumed to be absolutely continuous, but this can easily be extended to
arbitrary positive Borel measures whose support is an infinite set. See also [3, p. 190] for the polynomial
case.



168 J. Van Deun, A. Bultheel | Journal of Approximation Theory 123 (2003) 162—172

such that

lim |o, — | = 0.

n— oo

Now we shall state our first and most general result, where no other assumptions are
made on the location of the poles than that they stay away from the boundary.

Theorem 5. Assume the sequence A = {0y, a5, ...} =R’ is bounded away from I and let
u be a positive bounded Borel measure with supp(u) <1 an infinite set, which satisfies
the Erdos—Turdn condition ' >0 a.e. If {¢@,} are the orthonormal rational functions on

I associated with A and p, then locally uniformly in C' we have

o _n2
llm BI’!‘H fn §0n+l (X) — 1’
noow | — ﬁn ﬁn—o—l (,On(X)

where z = J~'(x) and B, :J_l(ock)for k=nn+1.

Proof. Define a measure v on T by (2) and then use Theorem 4 and the definitions
from the previous sections to write

L4 0h) g )/ Bha(2) + 1

l _‘r_%fsﬂ) ¢2n(z)/¢;3n(z) + 1

Pur1 () _ Onp1 1 q3§n+2(z)
QDn(x) 5n Cn+1(2) (Z)jn(z)

Noting that Ry = quk(ﬁk) for k = n,n+ 1 and using Theorem 2 we obtain

lim Ent2 On 2 — Py _ﬁi (p"+1(x) =
n—ow gy n+11 ﬁn ﬁirl q)”<x)

locally uniformly in C.

The asymptotic behaviour of the unimodular constant in front of this expression
can be found as follows. From recurrence equation (1) we obtain the following
expression:

: Pur1(x)
E, = lim —2——~ .
" X0 q)n(x)ZnJrl(x)

Then using the normalization E,,| >0 and the fact that convergence is uniform we
find

lim E2~n+2 5)1 -1

n—o0  Eyy Oyl
(remember that all o and f8; are real, |a|>1, || <1 and a5, >0). This proves the
theorem. [J

If all poles are at infinity, then all f, = 0 and we recover a well-known result
about the asymptotic behaviour of the ratio of orthogonal polynomials on [—1, 1],
see e.g. [6].
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As a corollary to our main theorem we consider the case of an asymptotically
periodic pole sequence.

Corollary 1. Assume the sequence A = {0y, a,, ...} =Rl is asymptotically m-periodic
with limiting values {00}, = R! and assume the measure p satisfies the conditions of
Theorem 5. If {¢,,} are the orthonormal rational functions on I associated with A and

1, then we have

A 1 —p° 1= (B%)?
lim (Pn;;1+1(x> _ l*OlZ (€’> > = 1, e, m
n—w (/)nm+i—l(x) zZ—= ﬁi 1 - (Bifl)

locally uniformly in C'\{a0}, where z=J""(x), fr =J (o) for k=1i,i—1 and

0_ 40
Oty = O,

If m = 1 we can easily obtain a more explicit expression for the limit function. We
state the following result without proof, since this is a matter of simple algebra.

Corollary 2. Assume the sequence A = {oy,0, ...}C[RI is such that lim,_ o, =
weR! and assume the measure y satisfies the conditions of Theorem 5. If {¢,} are the
orthonormal rational functions on I associated with A and p, then we have for |o| < oo

Ppa(x) _T—ax /(x>—1)(—1)
n— oo (/)n(x) o X — o X —0

locally uniformly in C'\{a} where the branch of the square root is chosen so that the
expression on the right-hand side is greater than 1 in modulus for xeC”.
If o] = oo then we have

lim M:x—k\/)cz—l
n—oo @,(x)

locally uniformly in C!, with the same convention for the branch of the square root.

The relation between orthogonal rational functions on the unit circle and those on
the interval can of course be used to find other asymptotic formulas as well. Using
the strong convergence result of Theorem 3 we can prove the following theorem.

Theorem 6. Assume the sequence A = {ay,a,, ...} =R’ is bounded away from I and let
u be a positive bounded Borel measure with supp(u) <1 an infinite set, which satisfies
the Szego condition

! log ¢ (x)
1 V1 —x2

Let v be defined by (2) and let o(z) be the associated Szegé function as defined in
Section 4. If {¢@,} are the orthonormal rational functions on I associated with A and p,

dx> — o0.
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then locally uniformly in C' we have

1 -8,z (x) = 1
(Dn - \/%G(Z)’

lim ¢,B,(z)

n— oo /l_ﬁi

where z = J~Y(x), B = J (o) and ¢, = +1 according to the normalization E, > 0.
In particular, we have

lim ¢,(x) =
n— o

pointwise for xeC.

Proof. As in the proof of Theorem 5, ¢,(x) can be written as

o) =5, ‘”"(j)@m%{l v “52(’”} (2(2)/B30(2) + 1.

2n

Using Theorems 2 and 3 this yields

. EZn l—ﬁZ 1
lim — B,(z)——L=0¢,(x) = —
n>w J, 2 l_ﬂz(p ) V2na(z)

locally uniformly in C.

It follows from [10] that the function <j~>2,,(z) is real for real z. This implies also that
2y, 1s real, so we must have

§2n
o1l
On

The last statement in the theorem follows from the fact that the Blaschke product
B,(z) diverges to zero for zeD. O

Remark 1. If we take the normalization k, >0 instead of E,, >0 for the functions
¢,(x) then using k,, = lim,_,,,@,(x)/b,(x) and the fact that o(z) is real and positive
for real z (because v'(0) as defined by (3) is an even function), it is not difficult to
show that ¢, in the previous theorem tends to 1 with # so we can omit it from the
statement.

7. Asymptotics for £, and B,

In this section, we wish to derive asymptotic formulas for the recurrence
coefficients E,, and B,. First we note that explicit formulas for the coefficients in
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terms of the orthogonal functions ¢, are given by

L @u(X)

En B XEI;‘I"{I P (X)Z”(x),
i () Zia)

Bi= i (2 G )

These formulas are readily obtained from recurrence formula (1). Now we can use

our main Theorem 5 to find the asymptotic formulas for E, and B,. The
computations are cumbersome but straightforward and we omit the proof.

X =02

Theorem 7. Under the assumptions of Theorem 5, the following relations hold in the
sense that the ratio of the left-hand side and the right-hand side tends to 1 as n tends to

infinity,
1—-42 )1 =1 -
g VB0 B~ foif)
(1 +ﬁn—l)(1 +ﬁn)
1— ﬁi (1 — ﬁifl)(ﬁn + ﬁn72) + 2ﬁn71(1 — ﬂnﬁn72)
1- Bfl—l (1 + ﬁi)(l - ﬁnflﬁi172)
where B, = J (o) for k =n,n—1,n— 2.

3

~ —

n

)

It is interesting to note that for n large enough the coefficients £, and B, will only
depend on, respectively, the last two or three poles. Another conclusion we can draw
from this theorem is that E,, is bounded by 0 < E, <2 for large enough n, while B, can
become arbitrarily large, depending on how close the poles come to the boundary of
the interval. Take for example 8, = ,_, = 0and f5,_; = +(1 — ¢) (where ¢ is a small
positive number), then for large n we will have B, ~ F \/2_/6

Of course we can write down explicit limits for the case of an asymptotically
periodic pole sequence. In the special case m = 1 where all poles tend to a fixed pole
xeR! these expressions are simplified considerably and are given in the following
corollary.

Corollary 3. Under the assumptions of Corollary 2 we have the following convergence
results for the recurrence coefficients,

lim E, =2(1—1/0?),
n— oo
lim B, = -2/o.

n— oo

Again we note the correspondence with the polynomial case. If « equals infinity,
the recurrence coefficients will behave asymptotically as the recurrence coefficients in
the well-known recurrence formula for orthogonal polynomials on 7, see e.g. [9, p.
310] for the case of an absolutely continuous measure satisfying Szegd’s condition,
and [6, p. 212] for the general situation.



172 J. Van Deun, A. Bultheel | Journal of Approximation Theory 123 (2003) 162—172

References

[1]1 A. Bultheel, P. Gonzalez-Vera, E. Hendriksen, O. Njastad, Orthogonal Rational Functions,
Cambridge Monographs on Applied and Computational Mathematics, Vol. 5, Cambridge University
Press, Cambridge, 1999.

[2] J. Van Deun, A. Bultheel, Orthogonal rational functions and quadrature on an interval, J. Comput.
Appl. Math. 153 (2003) 487-495.

[3] G. Freud, Orthogonal Polynomials, Pergamon, Oxford, New York, 1971.

[4] G.L. Lopez, On the asymptotics of the ratio of orthogonal polynomials and convergence of
multipoint padé approximants, Math. USSR-Sb. 56 (1985) 207-219.

[5] G.L. Lopez, Asymptotics of polynomials orthogonal with respect to varying measures, Constr.
Approx. 5 (1989) 199-219.

[6] E.A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials, Math. USSR-Sb. 32
(1977) 199-213.

[71 E.A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials. II, Math. USSR-Sb. 46
(1983) 105-117.

[8] W. Rudin, Real and Complex Analysis, 3rd Edition, McGraw-Hill, New York, 1987.

[9] G. Szegd, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., Vol. 33,
Providence, RI, 1967.

[10] P. Van gucht, A. Bultheel, A relation between orthogonal rational functions on the unit circle and the
interval [—1, 1], Comm. Anal. Th. Continued Fractions 8 (2000) 170-182.



	Ratio asymptotics for orthogonal rational functions on an interval
	Introduction
	Preliminaries
	Three-term recurrence
	Convergence results for the unit circle
	Relating the unit circle to the interval
	Ratio asymptotics
	Asymptotics for En and Bn
	References


