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Abstract

Let fa1; a2;yg be a sequence of real numbers outside the interval ½�1; 1� and m a positive

bounded Borel measure on this interval satisfying the Erd +os–Turán condition m040 a.e., where

m0 is the Radon–Nikodym derivative of the measure m with respect to the Lebesgue measure.

We introduce rational functions jnðxÞ with poles fa1;y; ang orthogonal on ½�1; 1� and

establish some ratio asymptotics for these orthogonal rational functions, i.e. we discuss the

convergence of jnþ1ðxÞ=jnðxÞ as n tends to infinity under certain assumptions on the location

of the poles. From this we derive asymptotic formulas for the recurrence coefficients in the

three-term recurrence relation satisfied by the orthonormal functions.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Ratio asymptotics for orthogonal polynomials on the interval ½�1; 1� have been
studied in several books and papers. Most results were obtained relating these
polynomials to polynomials orthogonal on the unit circle in the complex plane using
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the Joukowski transform x ¼ 1
2ðz þ z�1Þ which maps the unit circle to the interval

½�1; 1�: In this way, Szeg +o [9] obtained convergence results for weights satisfying
Szeg +o’s condition, and later Rakhmanov [6,7] derived results for the weaker Erd +os–
Turán condition. See also [4,5] for results about polynomials orthogonal with respect
to varying measures.

Orthogonal rational functions are a generalization of orthogonal polynomials, in
such a way that we recover the polynomial situation if all poles are at infinity.
Asymptotics for rational functions orthogonal on the unit circle (or, using a Cayley
transform, on the extended real line) were studied in [1], but the case of a finite
interval has thus far not been treated. In this paper, it is our aim to derive
convergence results for orthogonal rational functions on the interval ½�1; 1�; using a
relation between rational functions on the unit circle and the interval ½�1; 1� as
described in [10].

Just as in the polynomial case, orthogonal rational functions satisfy a three-term
recurrence relation. Asymptotics for the recurrence coefficients can be derived in a
very natural way from the ratio asymptotics for the orthogonal functions, as in [6].

In the next sections, we introduce the spaces of rational functions we are dealing
with and we discuss the recurrence relation. We will need several results before we
can state our main theorem about the convergence of the ratio of orthogonal
rational functions in Section 6. Using this theorem it is not difficult to derive
asymptotics for the recurrence coefficients.

2. Preliminaries

The complex plane is denoted by C; the Riemann sphere by #C ¼ C,fNg; the real
line by R and the extended real line by #R ¼ R,fNg: For the unit circle, its interior
and its exterior we introduce the following notation:

T ¼ fz: jzj ¼ 1g; D ¼ fz: jzjo1g; E ¼ fz: jzj41g:

We will also use I ¼ ½�1; 1�; RI ¼ #R\I and CI ¼ #C\I : Given positive bounded Borel
measures m on I and n on ½0; 2p�; respectively, the inner product is defined as

/ f ; gS ¼
Z 1

�1

f ðzÞgðzÞ dmðzÞ; on I ;

¼ 1

2p

Z 2p

0

f ðeiyÞgðeiyÞ dnðyÞ; on T:

In [1], the measure is assumed to be normalized, i.e. /1; 1S ¼ 1: The convergence
results from Section 4 were proved under that assumption, but it is not difficult to see
that they remain valid in the case of a nonnormalized measure. Therefore, in what
follows we will drop the normalization assumption. The convergence results for the
unit circle in Section 4 depend on the divergence to zero of the Blaschke products
BnðzÞ defined in this section. The Blaschke factors as defined in [1] differ from the

ones we define further on by a factor � %bn=jbnj: These unimodular constants are
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needed to ensure the convergence of the Blaschke products, but if they diverge to
zero, they diverge with or without these constant factors. Since this type of divergent
Blaschke products are considered in this paper, the presence of these constants is
irrelevant for our results. We have used the definitions from [10].

Now we are ready to introduce the space of rational functions with real poles in

RI : Let a sequence fa1; a2;ygCRI and a positive bounded Borel measure m with
suppðmÞCI an infinite set be given (where suppðmÞmeans the support of the measure,
i.e. the smallest closed set whose complement has m measure zero) and assume that
m040 a.e., where m0 is the Radon–Nikodym derivative of the measure m with respect
to the Lebesgue measure. Define factors

ZnðzÞ ¼
z

1� z=an

; n ¼ 1; 2;y

and basis functions

b0 ¼ 1; bnðzÞ ¼ bn�1ðzÞZnðzÞ; n ¼ 1; 2;y :

Then we define the space of rational functions with poles in fa1;y; ang as

Ln ¼ spanfb0;y; bng:

After orthonormalization of the basis fb0;y; bng with respect to m we obtain
orthogonal rational functions fj0;y;jng; where we choose the leading coefficient
kn in the expansion jnðzÞ ¼ knbnðzÞ þ? to be real. The fn will be uniquely
determined once the sign of kn is fixed. We will get back to this later on.

The orthogonal rational functions on the unit circle are defined similarly. Let a
sequence of complex numbers fb1; b2;ygCD and a positive bounded Borel
measure n on T be given (again assume suppðnÞ is an infinite set and n040 a.e.).
Define the Blaschke factors

znðzÞ ¼
z � bn

1� %bnz
; n ¼ 1; 2;y

and Blaschke products

B0 ¼ 1; BnðzÞ ¼ znðzÞBn�1ðzÞ; n ¼ 1; 2;y

and the space of rational functions on the unit circle,

L
3

n ¼ spanfB0;y;Bng:

Note that the poles f1= %b1;y; 1= %bng of a function fA L
3

n are in E: Orthonormaliz-

ing the basis fB0;y;Bng we obtain the orthogonal functions ff0;y;fng; where we
choose the leading coefficient kn in fnðzÞ ¼ knBnðzÞ þ? to be positive.

Now define the para-hermitian conjugate of a function f ðzÞ as

f�ðzÞ ¼ f ð1=%zÞ
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and the superstar transform of fn as

f�
nðzÞ ¼ BnðzÞfn�ðzÞ:

Note that f�
n is a function in L

3

n:

3. Three-term recurrence

As in the polynomial case, orthogonal rational functions on (an interval of ) the
real line satisfy a three-term recurrence relation. We shall call the orthogonal rational
function jn singular if pnðan�1Þ ¼ 0; where pn is the numerator polynomial of jn; and
regular otherwise. If we put by convention a�1 ¼ a0 ¼ N then it can be shown [1]
that the orthonormal functions jn satisfy the following three-term recurrence
relation with the initial conditions j�1ðzÞ ¼ 0; j0ðzÞ ¼ 1 iff the system fjng is
regular,

jnðzÞ ¼ EnZnðzÞ þ Bn

ZnðzÞ
Zn�1ðzÞ

� �
jn�1ðzÞ �

En

En�1

ZnðzÞ
Zn�2ðzÞ

jn�2ðzÞ: ð1Þ

If we take the coefficient En to be positive, then the functions fn will be uniquely
determined. This amounts to fixing the sign of kn: In the case of orthogonality on I

and poles in RI the regularity conditions are always satisfied. This follows from the
following theorem, which can be found in [2].

Theorem 1. Let jn be an orthogonal rational function on the interval ½�1; 1� with poles

outside this interval. Then the zeros of jn are simple and contained in the open interval

ð�1; 1Þ:

In [2], the measure was assumed to be absolutely continuous with respect to the
Lebesgue measure, but the theorem still holds for arbitrary measures if the support
of the measure is an infinite set (the proof proceeds along the same lines as
the classical proof on the location of the zeros of orthogonal polynomials, see
e.g. [9, p. 44]). Having established the regularity of the system fjng we know that
recurrence relation (1) holds for all nX1: It thus makes sense to study the asymptotic
behaviour of the recurrence coefficients En and Bn as n tends to infinity.

4. Convergence results for the unit circle

In this section, we will recall some convergence results about orthogonal rational
functions on the unit circle with poles in E; as stated in [1]. In the following, locally
uniform convergence in a region O will mean uniform convergence on compact
subsets of O:

First we mention the following theorem from [1, Chapter 9].
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Theorem 2. Let fb1; b2;ygCD be a sequence which is compactly included in D and

ff0;f1;yg the orthonormal functions associated with the basis functions fB0;B1;yg
as defined in Section 2, and let n be a positive bounded Borel measure on T satisfying

the Erd +os–Turán condition n040 a.e. Then locally uniformly in D;

lim
n-N

fnðzÞ
f�

nðzÞ
¼ 0:

Regarding ratio asymptotics we have

lim
n-N

enþ1f
�
nþ1ðzÞð1� %bnþ1zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jbnj2

q
enf

�
nðzÞð1� %bnzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jbnþ1j2

q ¼ 1;

where en is a unimodular constant such that enf
�
nð0Þ40; i.e. en ¼ jf�

nð0Þj=f�
nð0Þ: Again

convergence is locally uniform in D:

If n satisfies the Szeg +o conditionZ 2p

0

log n0ðyÞ dy4�N;

then we can define the Szeg +o function sðzÞ as

sðzÞ ¼ exp
1

4p

Z 2p

0

eiy þ z

eiy � z
log n0ðyÞ dy

� �
; zAD:

In this case, we have the following strong convergence result from [1, Chapter 9].

Theorem 3. Let fb1; b2;ygCD be a sequence which is compactly included in D and

ff0;f1;yg the orthonormal functions associated with the basis functions fB0;B1;yg
as defined in Section 2, and let n be a positive bounded Borel measure on T satisfying

Szeg +o’s condition log n0AL1½0; 2p�: Then locally uniformly in D;

lim
n-N

en

f�
nðzÞð1� %bnzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jbnj
2

q ¼ 1

sðzÞ;

where en is as in Theorem 2 and sðzÞ is the Szeg +o function defined above.

5. Relating the unit circle to the interval

In this section, we use x as the independent variable for the orthonormal rational
functions jnðxÞ on I and z for the functions fnðzÞ orthogonal on the unit circle. They
can be related to each other in more or less the same way orthogonal polynomials on
I can be related to orthogonal polynomials on the unit circle, see [9]. The relations in
this section were derived in [10].

We denote the Joukowski transform x ¼ 1
2
ðz þ z�1Þ by x ¼ JðzÞ; mapping the

open unit disc D to the cut Riemann sphere CI and the unit circle T to the interval I :

ARTICLE IN PRESS
J. Van Deun, A. Bultheel / Journal of Approximation Theory 123 (2003) 162–172166



The inverse mapping is denoted by z ¼ J�1ðxÞ and is chosen so that zAD if xACI :

To the sequence fa1; a2;ygCRI we associate a sequence fb1; b2;ygCI such that

bk ¼ J�1ðakÞ; and a sequence f *b1; *b2;yg such that *b2k ¼ *b2k�1 ¼ bk: The
corresponding Blaschke products and orthogonal functions are denoted by a tilde.

Obviously, B̃2k ¼ ðBkÞ2: The fact that fangCRI implies that fbng is actually in the
open interval ð�1; 1Þ and thus in D:

Next define the measure1 n on T as

nðEÞ ¼ mðfcos y; yAE-½0; pÞgÞ þ mðfcos y; yAE-½p; 2pÞgÞ: ð2Þ

This is sometimes written as nðEÞ ¼
R

E
jdmðcos yÞj; but we prefer the less ambiguous

notation. Using the Lebesgue decomposition of m and the change-of-variables
theorem (see e.g. [8, p. 153]) it is not difficult to see that

n0ðyÞ ¼ m0ðcos yÞjsin yj: ð3Þ

Then if f *fng is the orthonormal set associated with the measure n and the sequence

f *b1; *b2;yg; we have the following theorem.

Theorem 4. Let fjng be a set of orthonormal rational functions on I and f *fng the

corresponding set of functions orthogonal on T with poles and measure as defined

above, then they are related by

jnðxÞ ¼ dnð2pÞ�
1
2 1þ

*f2nðbnÞ
*k2n

( )�1
2

fBn�ðzÞ *f2nðzÞ þ BnðzÞ *f2n�ðzÞg;

where x ¼ JðzÞ and dn ¼ 71 is such that the normalization of Section 2 holds.

Note that we have to double the multiplicity of every pole to obtain these results.

6. Ratio asymptotics

With the aid of Theorems 2 and 4, we are able to prove our main results about the
convergence of the ratio of orthogonal rational functions on I : Of course more
restrictive conditions on the location of the poles lead to more specific convergence
results. In the sequel we will use the concept of asymptotic periodicity, which we
define as follows: a sequence fa1; a2;yg is asymptotically periodic with period m if

there exists a periodic sequence fa01; a02;yg;

a0nþm ¼ a0n; n ¼ 1; 2;y

ARTICLE IN PRESS
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such that

lim
n-N

jan � a0nj ¼ 0:

Now we shall state our first and most general result, where no other assumptions are
made on the location of the poles than that they stay away from the boundary.

Theorem 5. Assume the sequence A ¼ fa1; a2;ygCRI is bounded away from I and let

m be a positive bounded Borel measure with suppðmÞCI an infinite set, which satisfies

the Erd +os–Turán condition m040 a.e. If fjng are the orthonormal rational functions on

I associated with A and m; then locally uniformly in CI we have

lim
n-N

z � bnþ1

1� bnz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2n
1� b2nþ1

s
jnþ1ðxÞ
jnðxÞ

¼ 1;

where z ¼ J�1ðxÞ and bk ¼ J�1ðakÞ for k ¼ n; n þ 1:

Proof. Define a measure n on T by (2) and then use Theorem 4 and the definitions
from the previous sections to write

jnþ1ðxÞ
jnðxÞ

¼ dnþ1

dn

1

znþ1ðzÞ
*f�
2nþ2ðzÞ
*f�
2nðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ *f2nðbnÞ

*k2n

1þ
*f2nþ2ðbnþ1Þ

*k2nþ2

vuuut *f2nþ2ðzÞ= *f�
2nþ2ðzÞ þ 1

*f2nðzÞ= *f�
2nðzÞ þ 1

:

Noting that *k2k ¼ *f�
2kðbkÞ for k ¼ n; n þ 1 and using Theorem 2 we obtain

lim
n-N

*e2nþ2

*e2n

dn

dnþ1

z � bnþ1

1� bnz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2n
1� b2nþ1

s
jnþ1ðxÞ
jnðxÞ

¼ 1

locally uniformly in CI :
The asymptotic behaviour of the unimodular constant in front of this expression

can be found as follows. From recurrence equation (1) we obtain the following
expression:

Enþ1 ¼ lim
x-an

jnþ1ðxÞ
jnðxÞZnþ1ðxÞ

:

Then using the normalization Enþ140 and the fact that convergence is uniform we
find

lim
n-N

*e2nþ2

*e2n

dn

dnþ1
¼ 1

(remember that all ak and bk are real, jakj41; jbkjo1 and akbk40). This proves the
theorem. &

If all poles are at infinity, then all bk ¼ 0 and we recover a well-known result
about the asymptotic behaviour of the ratio of orthogonal polynomials on ½�1; 1�;
see e.g. [6].
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As a corollary to our main theorem we consider the case of an asymptotically
periodic pole sequence.

Corollary 1. Assume the sequence A ¼ fa1; a2;ygCRI is asymptotically m-periodic

with limiting values fa0i g
m
i¼1CRI and assume the measure m satisfies the conditions of

Theorem 5. If fjng are the orthonormal rational functions on I associated with A and

m; then we have

lim
n-N

jnmþiðxÞ
jnmþi�1ðxÞ

¼ 1� b0i�1z

z � b0i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb0i Þ

2

1� ðb0i�1Þ
2

s
; i ¼ 1;y;m

locally uniformly in CI
\fa0i g; where z ¼ J�1ðxÞ; b0k ¼ J�1ða0kÞ for k ¼ i; i � 1 and

a00 ¼ a0m:

If m ¼ 1 we can easily obtain a more explicit expression for the limit function. We
state the following result without proof, since this is a matter of simple algebra.

Corollary 2. Assume the sequence A ¼ fa1; a2;ygCRI is such that limn-Nan ¼
aARI and assume the measure m satisfies the conditions of Theorem 5. If fjng are the

orthonormal rational functions on I associated with A and m; then we have for jajoN

lim
n-N

jnþ1ðxÞ
jnðxÞ

¼ 1� ax

x � a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 1Þða2 � 1Þ

p
x � a

locally uniformly in CI
\fag where the branch of the square root is chosen so that the

expression on the right-hand side is greater than 1 in modulus for xACI :
If jaj ¼ N then we have

lim
n-N

jnþ1ðxÞ
jnðxÞ

¼ x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

locally uniformly in CI ; with the same convention for the branch of the square root.

The relation between orthogonal rational functions on the unit circle and those on
the interval can of course be used to find other asymptotic formulas as well. Using
the strong convergence result of Theorem 3 we can prove the following theorem.

Theorem 6. Assume the sequence A ¼ fa1; a2;ygCRI is bounded away from I and let

m be a positive bounded Borel measure with suppðmÞCI an infinite set, which satisfies

the Szeg +o conditionZ 1

�1

log m0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx4�N:

Let n be defined by (2) and let sðzÞ be the associated Szeg +o function as defined in

Section 4. If fjng are the orthonormal rational functions on I associated with A and m;
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then locally uniformly in CI we have

lim
n-N

cnBnðzÞ
1� bnzffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2n

q jnðxÞ ¼
1ffiffiffiffiffiffi

2p
p

sðzÞ
;

where z ¼ J�1ðxÞ; bk ¼ J�1ðakÞ and cn ¼ 71 according to the normalization En40:
In particular, we have

lim
n-N

jnðxÞ ¼ N

pointwise for xACI :

Proof. As in the proof of Theorem 5, jnðxÞ can be written as

jnðxÞ ¼ dn

*f�
2nðzÞ

BnðzÞ
ð2pÞ�

1
2 1þ

*f2nðbnÞ
*k2n

( )�1
2

f *f2nðzÞ= *f�
2nðzÞ þ 1g:

Using Theorems 2 and 3 this yields

lim
n-N

*e2n

dn

BnðzÞ
1� bnzffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2n

q jnðxÞ ¼
1ffiffiffiffiffiffi

2p
p

sðzÞ

locally uniformly in CI :

It follows from [10] that the function *f2nðzÞ is real for real z: This implies also that
*e2n is real, so we must have

*e2n

dn

¼ 71:

The last statement in the theorem follows from the fact that the Blaschke product
BnðzÞ diverges to zero for zAD: &

Remark 1. If we take the normalization kn40 instead of En40 for the functions
jnðxÞ then using kn ¼ limx-an

jnðxÞ=bnðxÞ and the fact that sðzÞ is real and positive
for real z (because n0ðyÞ as defined by (3) is an even function), it is not difficult to
show that cn in the previous theorem tends to 1 with n so we can omit it from the
statement.

7. Asymptotics for En and Bn

In this section, we wish to derive asymptotic formulas for the recurrence
coefficients En and Bn: First we note that explicit formulas for the coefficients in
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terms of the orthogonal functions jn are given by

En ¼ lim
x-an�1

jnðxÞ
jn�1ðxÞZnðxÞ

;

Bn ¼ lim
x-an�2

jnðxÞ
jn�1ðxÞ

Zn�1ðxÞ
ZnðxÞ

� EnZn�1ðxÞ
� �

:

These formulas are readily obtained from recurrence formula (1). Now we can use
our main Theorem 5 to find the asymptotic formulas for En and Bn: The
computations are cumbersome but straightforward and we omit the proof.

Theorem 7. Under the assumptions of Theorem 5, the following relations hold in the

sense that the ratio of the left-hand side and the right-hand side tends to 1 as n tends to

infinity,

EnB2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� b2n�1Þð1� b2nÞ

q
ð1� bn�1bnÞ

ð1þ b2n�1Þð1þ b2nÞ
;

BnB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2n
1� b2n�1

s
ð1� b2n�1Þðbn þ bn�2Þ þ 2bn�1ð1� bnbn�2Þ

ð1þ b2nÞð1� bn�1bn�2Þ
;

where bk ¼ J�1ðakÞ for k ¼ n; n � 1; n � 2:

It is interesting to note that for n large enough the coefficients En and Bn will only
depend on, respectively, the last two or three poles. Another conclusion we can draw
from this theorem is that En is bounded by 0oEnp2 for large enough n; while Bn can
become arbitrarily large, depending on how close the poles come to the boundary of
the interval. Take for example bn ¼ bn�2 ¼ 0 and bn�1 ¼ 7ð1� eÞ (where e is a small

positive number), then for large n we will have BnE8
ffiffiffiffiffiffiffi
2=e

p
:

Of course we can write down explicit limits for the case of an asymptotically
periodic pole sequence. In the special case m ¼ 1 where all poles tend to a fixed pole

aARI these expressions are simplified considerably and are given in the following
corollary.

Corollary 3. Under the assumptions of Corollary 2 we have the following convergence

results for the recurrence coefficients,

lim
n-N

En ¼ 2ð1� 1=a2Þ;

lim
n-N

Bn ¼ �2=a:

Again we note the correspondence with the polynomial case. If a equals infinity,
the recurrence coefficients will behave asymptotically as the recurrence coefficients in
the well-known recurrence formula for orthogonal polynomials on I ; see e.g. [9, p.
310] for the case of an absolutely continuous measure satisfying Szeg +o’s condition,
and [6, p. 212] for the general situation.
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